Finding New Varieties of Malware with the Classification of Network Behavior
نویسندگان
چکیده
An enormous number of malware samples pose a major threat to our networked society. Antivirus software and intrusion detection systems are widely implemented on the hosts and networks as fundamental countermeasures. However, they may fail to detect evasive malware. Thus, setting a high priority for new varieties of malware is necessary to conduct in-depth analyses and take preventive measures. In this paper, we present a traffic model for malware that can classify network behaviors of malware and identify new varieties of malware. Our model comprises malwarespecific features and general traffic features that are extracted from packet traces obtained from a dynamic analysis of the malware. We apply a clustering analysis to generate a classifier and evaluate our proposed model using large-scale live malware samples. The results of our experiment demonstrate the effectiveness of our model in finding new varieties of malware. key words: malware communication model, clustering analysis, network behavior classification, new varieties of malware
منابع مشابه
Classification of encrypted traffic for applications based on statistical features
Traffic classification plays an important role in many aspects of network management such as identifying type of the transferred data, detection of malware applications, applying policies to restrict network accesses and so on. Basic methods in this field were using some obvious traffic features like port number and protocol type to classify the traffic type. However, recent changes in applicat...
متن کاملBehavior Classification based Self-learning Mobile Malware Detection
More and more mobile malware appears on mobile internet and pose great threat to mobile users. It is difficult for traditional signature-based anti-malware system to detect the polymorphic and metamorphic mobile malware. A mobile malware behavior analysis method based on behavior classification and self-learning data mining is proposed to detect the malicious network behavior of the unknown or ...
متن کاملMalware Detection using Classification of Variable-Length Sequences
In this paper, a novel method based on the graph is proposed to classify the sequence of variable length as feature extraction. The proposed method overcomes the problems of the traditional graph with variable length of data, without fixing length of sequences, by determining the most frequent instructions and insertion the rest of instructions on the set of “other”, save speed and memory. Acco...
متن کاملDyVSoR: dynamic malware detection based on extracting patterns from value sets of registers
To control the exponential growth of malware files, security analysts pursue dynamic approaches that automatically identify and analyze malicious software samples. Obfuscation and polymorphism employed by malwares make it difficult for signature-based systems to detect sophisticated malware files. The dynamic analysis or run-time behavior provides a better technique to identify the threat. In t...
متن کاملFeature-based Malicious URL and Attack Type Detection Using Multi-class Classification
Nowadays, malicious URLs are the common threat to the businesses, social networks, net-banking etc. Existing approaches have focused on binary detection i.e. either the URL is malicious or benign. Very few literature is found which focused on the detection of malicious URLs and their attack types. Hence, it becomes necessary to know the attack type and adopt an effective countermeasure. This pa...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- IEICE Transactions
دوره 100-D شماره
صفحات -
تاریخ انتشار 2017